CMSC424: Database Design
Introduction/Overview

Professor: Pete Keleher
keleher@cs.umd.edu

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc…
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem
Approach

1. We will encode and list all our knowledge about the schema
 ◦ Functional dependencies (FDs)
 ◦ SSN → name (means: SSN “implies” name)
 ◦ If two tuples have the same “SSN”, they must have the same “name”
 ◦ movietitle → length ❏ Not true.
 ◦ But, (movietitle, movieYear) → length --- Probably.
2. We will define a set of rules that the schema must follow to be considered good
 ◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …
 ◦ A normal form specifies constraints on the schemas and FDs
3. If not in a “normal form”, we modify the schema

FDs: Example

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Dept Name</th>
<th>Credits</th>
<th>Section ID</th>
<th>Semester</th>
<th>Year</th>
<th>Building</th>
<th>Room No.</th>
<th>Capacity</th>
<th>Time Slot ID</th>
</tr>
</thead>
</table>

Functional dependencies

- course_id → course_name, dept_name, credits
- building, room_number → capacity
- course_id, section_id, semester, year → building, room_number, time_slot_id
Functional Dependencies

Let \(r(R) \) be a relation schema and
\[\alpha \subseteq R \quad \text{and} \quad \beta \subseteq R \]
The functional dependency
\[\alpha \rightarrow \beta \]
holds on \(R \) iff for any legal relations \(r(R) \), whenever two tuples \(t_1 \) and \(t_2 \) of \(r \) have same values for \(\alpha \), they have same values for \(\beta \).
\[t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta] \]

Example:

\[
\begin{array}{cc}
A & B \\
1 & 4 \\
1 & 5 \\
3 & 7 \\
\end{array}
\]

In this instance, \(A \rightarrow B \) does NOT hold, but \(B \rightarrow A \) does hold.

Functional Dependencies

- Difference between holding on an instance and holding on all legal relations.

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>StarName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Hamill</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Fisher</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>H. Ford</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>no</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

- \(Title \rightarrow Year \) holds on this instance.

- Is this a true functional dependency?
 - No. Two movies in different years can have the same name.
- Can’t draw conclusions based on a single instance
 - Need domain knowledge to decide which FDs hold.

An instance is the value of a \(r \) at a particular point in time.
Functional Dependencies

- Functional dependencies and *keys*
 - A *key* constraint is a specific form of a FD.
 - E.g. if α is a superkey for R, then:
 \[\alpha \to R \]
 - Similarly for *candidate keys and primary keys*.

- Deriving FDs
 - A set of FDs may imply other FDs
 - E.g. If $A \to B$, and $B \to C$, then clearly $A \to C$
 - *We will see a formal method for inferring this later*

Definitions

1. A relation instance r *satisfies* a set of functional dependencies, F, if the FDs hold on the relation

2. F holds on a relation schema R if no legal (allowable) relation instance of R violates it

3. A functional dependency, $\alpha \to \beta$, is called *trivial* if:
 - β is a subset of α
 - E.g. Movieyear, length \to length

4. Given a set of functional dependencies, F, its *closure*, F^+, is all the FDs that are implied by FDs in F.
Approach

1. We will encode and list all our knowledge about the schema
 - Functional dependencies (FDs)
 - Also:
 - Multi-valued dependencies (briefly discuss later)
 - Join dependencies etc…

2. We will define a set of rules that the schema must follow to be considered good
 - “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …
 - A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

BCNF: Boyce-Codd Normal Form

A relation schema \(R \) is “in BCNF” if:

- Every functional dependency \(\alpha \rightarrow \beta \) that holds on it is EITHER:
 1. Trivial OR
 2. \(\alpha \) is a superkey of \(R \)

Why is BCNF good?

- Guarantees that there can be no redundancy because of a functional dependency
- Consider a relation \(r(A, B, C, D) \) with functional dependency
 - \(A \rightarrow B \) and two tuples: \((a1, b1, c1, d1)\), and \((a1, b1, c2, d2)\)
 - \(b1 \) is repeated because of the functional dependency
 - BUT this relation is not in BCNF
 - \(A \rightarrow B \) is neither trivial nor is \(A \) a superkey for the relation
BCNF and Redundancy

Why does redundancy arise?
- Given a FD, \(\alpha \rightarrow \beta \), if \(\alpha \) is repeated (\(\beta - \alpha \)) has to be repeated
 1. If rule 1 is satisfied, (\(\beta - \alpha \)) is empty, so not a problem.
 2. If rule 2 is satisfied, then \(\alpha \) can’t be repeated, so this doesn’t happen either

- Hence no redundancy because of FDs
 - Redundancy may exist because of other types of dependencies
 - Higher normal forms used for that (specifically, 4NF)
 - Data may naturally have duplicated/redundant data
 - We can’t control that unless a FD or some other dependency is defined

Approach

1. We will encode and list all our knowledge about the schema
 - Functional dependencies (FDs); Multi-valued dependencies; Join dependencies etc…

2. We will define a set of rules that the schema must follow to be considered good
 - “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …
 - A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema
 - Through lossless decomposition (splitting)
 - Or direct construction using the dependencies information
What if the schema is not in BCNF?
- Decompose (split) the schema into two pieces.

From the previous example: split the schema into:
- \(r_1(A, B), \ r_2(A, C, D) \)
- The first schema is in BCNF, the second one may not be (and may require further decomposition)
- No repetition now: \(r_1 \) contains \((a_1, b_1)\), but \(b_1 \) will not be repeated

Careful: you want the decomposition to be **lossless**
- No information should be lost
 - The above decomposition is lossless

Achieving BCNF Schemas

- For all dependencies \(\alpha \rightarrow \beta \) in \(F^+ \), check if \(A \) is a superkey
 - By using attribute closure

- If not, then
 - Choose a dependency in \(F^+ \) that breaks the BCNF rules, say \(\alpha \rightarrow \beta \)
 - Create \(R_1 = \alpha \beta \)
 - Create \(R_2 = \alpha (R - \beta - \alpha) = R - \beta \)
 - Note that: \(R_1 \cap R_2 = \alpha \) and \(\alpha \rightarrow \alpha \beta \) (= \(R_1 \)), so this is lossless decomposition

- Repeat for \(R_1 \), and \(R_2 \)
 - By defining \(F_1 \) to be all dependencies in \(F \) that contain only attributes in \(R_1 \)
 - Similarly \(F_2 \)
Example 1

\[R = (A, B, C) \]
\[F = \{A \rightarrow B, B \rightarrow C\} \]
Candidate keys = \{A\}
BCNF? No. B \rightarrow C violates.

\[B \rightarrow C \]

\[R1 = (B, C) \]
\[F1 = \{B \rightarrow C\} \]
Candidate keys = \{B\}
BCNF = true

\[R2 = (A, B) \]
\[F2 = \{A \rightarrow B\} \]
Candidate keys = \{A\}
BCNF = true

\[R3 = (A, B) \]
\[F3 = \{A \rightarrow B\} \]
Candidate keys = \{A\}
BCNF = true

\[BC \rightarrow D \]

\[R1 = (B, C, D) \]
\[F1 = \{BC \rightarrow D\} \]
Candidate keys = \{BC\}
BCNF = true

\[R2 = (B, C, A, E) \]
\[F2 = \{A \rightarrow B\} \]
Candidate keys = \{ACE\}
BCNF = false (A \rightarrow B)

\[A \rightarrow B \]

\[R3 = (A, B) \]
\[F3 = \{A \rightarrow B\} \]
Candidate keys = \{A\}
BCNF = true

\[R4 = (A, C, E) \]
\[F4 = \{\} \] [[only trivial]]
Candidate keys = \{ACE\}
BCNF = true

Dependency preservation ???
We can check:
BC \rightarrow D (R1), A \rightarrow B (R3),
Dependency-preserving decomposition
R = (A, B, C, D, E)
F = {A → B, BC → D}
Candidate keys = {ACE}
BCNF = Violated by {A → B, BC → D} etc…

From A → B
AC → BC (aug)
AC → D (trans)

R1 = (A, B)
F1 = {A → B}
Candidate keys = {A}
BCNF = true

R2 = (A, C, D, E)
F2 = {AC → D}
Candidate keys = {ACE}
BCNF = false (AC → D)

R3 = (A, C, D)
F3 = {AC → D}
Candidate keys = {AC}
BCNF = true

R4 = (A, C, E)
F4 = {} [[only trivial]]
Candidate keys = {ACE}
BCNF = true

Dependency preservation ???
We can check:
A → B (R1), AC → D (R3),
but we lost BC → D
So this is not a dependency-preserving decomposition

R = (A, B, C, D, E, H)
F = {A → BC, E → HA}
Candidate keys = {DE}
BCNF = Violated by {A → BC} etc…

R1 = (A, B, C)
F1 = {A → BC}
Candidate keys = {A}
BCNF = true

R2 = (A, D, E, H)
F2 = {E → HA}
Candidate keys = {DE}
BCNF = false (E → HA)

R3 = (E, H, A)
F3 = {E → HA}
Candidate keys = {E}
BCNF = true

R4 = (ED)
F4 = {} [[only trivial]]
Candidate keys = {DE}
BCNF = true

Dependency preservation ???
We can check:
A → BC (R1), E → HA (R3),
Dependency-preserving decomposition
2. Closure of an attribute set

- Given a set of attributes α and a set of FDs F,
- **closure of α under F** is the set of all attributes implied by α

- In other words, the largest β such that: $\alpha \rightarrow \beta$

Redefining **super keys**:
- The closure of a super key is the entire relation schema

Redefining **candidate keys**:
- 1. It is a super key
- 2. No subset of it is a super key

Computing the closure for α

- Simple algorithm

 1. Start with $\beta = \alpha$.
 2. Go over all functional dependencies, $\delta \rightarrow \gamma$, in F^+
 3. If $\delta \subseteq \beta$, then
 Add γ to β
 4. Repeat till β stops changing
Example

- \(R = (A, B, C, G, H, I) \)
- \(F = \{ A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \} \)

- \((AG)^+\)?
 - 1. result = AG
 - 2. result = ABCG \((A \rightarrow C \text{ and } A \rightarrow B) \)
 - 3. result = ABCGH \((CG \rightarrow H \text{ and } CG \subseteq AGBC) \)
 - 4. result = ABCGHI \((CG \rightarrow I \text{ and } CG \subseteq AGBCH) \)

- Is \((AG)\) a candidate key?
 - 1. It is a super key.
 - 2. \((A^+) = ABCH, (G^+) = G\).
 - YES.