Authentication

- Authentication may be based on
 - What you know
 - What you have
 - What you are
 - Examples? Tradeoffs?
 - Others?

- Can also consider two-factor authentication
What you are -- biometrics

- Tradeoff of cost vs. accuracy
 - Face (low accuracy, low cost)
 - Fingerprint/hand print (good accuracy, moderate cost)
 - Iris scan (high accuracy, high cost)
 - ...

Verification vs. identification

- Verification: send (id, biometric) and check whether this 'matches' the stored biometric for user id
 - Better suited for authentication
- Identification: Send biometric, find the user whose biometric is the closest match
 - Comes up in law enforcement
Challenges in using biometrics

- Reproducibility
 - How much entropy \((= \log_2(\text{expected #att}))\) is there?
 - Difficult to estimate
 - How private are they?
 - Revocation?
 - Difficult to use securely
 - Reproducibility
 - Non-uniform
 - Still need a secure protocol...

Reproducibility

- Biometric data is not exactly reproducible
 - Need to check for *closeness* rather than an exact match
 - Implies the existence of false positives and negatives
 - Must trade off one vs. the other...
 - Implies a reduction in entropy; easier for an attacker to guess a value close to your biometric data
How can you securely authenticate yourself to a remote server using your fingerprint?

Trivial solution:

Biometric authentication

User \[\rightarrow\] Server

close?

Can work for 'local' authentication…
…but completely vulnerable to eavesdropping!

Better(?) solution

User \[\leftarrow\] nonce \[\rightarrow\] Server

h = MAC(, nonce)

A single-bit difference in the scanned fingerprint results in a failed authentication!
Authentication using biometrics

- There exist techniques for secure authentication using biometric data
 - Resilient to error!
 - Establish random, shared key
- An active research area...
Password selection

- User selection of passwords is typically very poor
 - Low-entropy password makes dictionary attacks possible

- Typical passwords:
 - Derived from account names or usernames
 - Dictionary words, reversed dictionary words, or small modifications of dictionary words

- Users typically use the same password for multiple accounts
 - Weakest account determines the security!
 - Can use programs to correct this

Password strength

- Several empirical studies of password strength, using compromised passwords

- “Most” (> 80%) passwords have fewer than 22 bits of entropy
 (Weir et al., “Testing Metrics for Password-creation Policies by Attacking Large Sets of Revealed Passwords”)
Better password selection

- Non-alphanumeric characters
- Longer phrases
- Can try to enforce good password selection…
- …but these types of passwords are difficult for people to memorize and type!
- Security/usability tradeoff

Mandating password changes

- Many sites now force a password change at regular intervals

- What does this accomplish?
 - Off-line attacks?
 - Adversary who breaks in and passively monitors a user’s account?
Password storage

- In the clear...

- Hash of password
 - Makes adversary’s job (slightly) harder
 - Potentially protects users who choose good passwords

- “Salt”-ed hash of password
 - No harder to attack any single user’s password, but bulk dictionary attacks are harder
 - Prevents using pre-computed ‘rainbow tables’
 - Prevents password duplication from being detected

Password storage

- Encrypted passwords? (What attack is this defending against?)

- Centralized server stores password...
Password-based protocols

- Password-based authentication
 - Any system based on low-entropy shared secret

- Distinguish on-line attacks vs. off-line attacks

From passwords to keys?

- Can potentially use passwords to derive symmetric or public keys
- What is the entropy of the resulting key?
- Allows off-line dictionary attacks on the password
Password-based protocols

- Any password-based protocol is potentially vulnerable to an "on-line" dictionary attack
 - On-line attacks can be detected and limited

- How?
 - "Three strikes"
 - Monitor ratio of successful to failed logins
 - Gradually slow login-response time

- Potential DoS

Password-based protocols

- Off-line attacks can never be ‘prevented’, but protocols can be made secure against such attacks

- Any password-based protocol is vulnerable to off-line attack if the server is compromised
 - Once the server is compromised, why do we care?
Basic password protocols…

- Server stores $H(pw)$; user sends pw
 - Insecure against replay attacks
 - If pw is a password, not secure against server compromise or eavesdropping (off-line attack)

- Server stores pw, sends R; user sends $MAC_pw(R)$
 - If pw is a password, not secure against server compromise or eavesdropping (off-line attack)

Mutual authentication

- None of the password protocols we have seen so far offer mutual authentication
Authentication with password + public key

- Say that only the server has a known public key (e.g., SSL)
- Server sends R
- Client sends $E_{pk}(R, \text{password, session-key})$

- Secure if encryption scheme is CCA-secure
- Can be extended to give mutual authentication

“Do Strong Passwords Accomplish Anything?”
Basic points

- Weak passwords suffice if account locking is used
- Strong passwords are overly burdensome
- Strong passwords do nothing to protect users from most common attacks: phishing or keylogging

Cost/benefit analysis
- Are strong passwords worth the effort?

Attack taxonomy

- Phishing
- Keylogging
- On-line password guessing for one userID
- On-line password guessing for many userIDs
- Off-line password guessing
- Other
 - Social engineering
 - Password cached on machine
<h2>Attack taxonomy</h2>

- Phishing/keylogging/other attacks unaffected by password strength
- On-line attacks against one userID are preventable using moderate-strength passwords (next slide)
- Off-line attacks are preventable by using a good protocol
 - crypto must be good: don’t use El Gamal....
- Main advantage of strong passwords is for on-line attacks against many userIDs

<h2>On-line attacks against one user?</h2>

- Assumptions
 - 6-digit PIN
 - 24-hour lockdown after 3 failed login attempts
- Number of passwords an attacker can search in 10 years
 - $3 \times 365 \times 10 \sim 10^4$
- Probability of success
 - $10^4/10^6 = 1\%$
On-line attacks, many users?

- An attack on 10^6 users would likely succeed in breaking in to one of their accounts
 - Account locking has no effect!

- Note that the number of password guesses depends on the number of users
 - N users => $3N$ password guesses per day (under previous assumptions)

On-line attacks, many users?

- Useful to think in terms of the credential space of (userID, password) pairs
 - The adversary breaks in if it guesses a valid credential

- Say all 25-bit strings are valid userIDs (because userIDs issued sequentially) and 20-bit passwords are used
 - Size of credential space = 2^{45}
 - Number of valid credentials = 2^{25}
 - Success probability per attempt = 2^{-20}
 - Expected attempts to success = 2^{20}
On-line attacks, many users?

- Could decrease attacker's success probability by making the space of legal userIDs more sparse!

- We usually assume userIDs are public (e.g., sent in the clear during login)...
 - ...but it would be hard for the attacker to collect very many userIDs

On-line attacks, many users?

- Interesting distinction here
 - Users can write down their userIDs
 - Protected against on-line attacks by moderate-strength password and account locking
 - Attacker can get the userID of any particular user
 - Attacker cannot (easily) get the userIDs of many users

- Note that an attacker who can easily get many userIDs can perform a DoS attack on the site (lock out users)
On-line attacks, many users?

- Preceding analysis assumes the adversary cannot distinguish an incorrect password guess from an incorrect guess of a userID
- Be careful in what error messages are returned
- Be careful of timing attacks

Forgotten passwords

- How to deal with users who forget their passwords?
- Traditional approach: user physically requests password reset (after showing ID, etc.)
- This does not work well over the web...
Forgotten passwords

- *Secret questions* are often used

- These are not very good!
 - 33-39% of answers could be guessed by family members or close friends
 - 20% of users could not remember their own answers!

- Can be improved somewhat using multiple questions, and requiring a threshold of correct answers