A high-level survey of cryptography
Caveats

- Everything I present will be (relatively) informal
 - I may simplify, but I will not say anything that is an outright lie…

- Cryptography offers formal definitions and rigorous proofs of security (neither of which we will cover here)
 - For more details, take CMSC 456

Goals of cryptography

- Crypto deals primarily with three goals:
 - Confidentiality
 - Integrity (of data)
 - Authentication (of resources, people, systems)

- Other goals also considered
 - E.g., non-repudiation
 - E-cash (e.g., double spending)
 - Secure distributed computation
 - Anonymity
 - ...

Private- vs. public-key settings

- There are two settings for cryptography:
 - Private-key / shared-key / symmetric-key / secret-key
 - Public-key
- The private-key setting is the “classical” one (thousands of years old)
- The public-key setting dates to the 1970s

Private-key cryptography

- The communicating parties share some information that is random and secret
 - This shared information is called a key
 - Key is completely unknown to an attacker
 - Key is uniformly random
- The key k must be shared in advance
 - We don't discuss (for now) how they do this
 - You can imagine they meet on a dark street corner and Alice hands a USB device (with a key on it) to Bob
Canonical App 1: user-to-user

Alice \(K \) \(\leftrightarrow \) \(shared\ info \) \(K \) Bob

Canonical App 2: user-to-same-user

Alice \(K \) \(\rightarrow \) Bob \(K \)
Private-key cryptography

- Two complementary goals:
 - Secrecy and integrity

- For secrecy:
 - Private-key encryption

- For integrity:
 - Message authentication codes

Attacker types

- Passive eavesdropping vs. active interference

- Secrecy is a concern for passive or active adversaries

- Integrity is a concern for active adversaries
Private-key encryption

Functional definition

- Encryption algorithm:
 - Takes a key and a message (plaintext), and outputs a ciphertext
 - $c \leftarrow E_k(m)$, possibly randomized!
- Decryption algorithm:
 - Takes a key and a ciphertext, and outputs a message (or perhaps an error)
 - $m = D_k(c)$
- Correctness: for all k, we have $D_k(E_k(m)) = m$
- We have not yet said anything about security…
Secrecy

- Want secrecy against a passive eavesdropper who observed the ciphertext
- This adversary does not know the key
Security through obscurity?

- Always assume that the full details of crypto protocols and algorithms are public
 - Known as Kerckhoffs’s principle
 - The only secret information is the key
- “Security through obscurity” is a bad idea…
 - True in general; even more true in the case of cryptography
 - Home-brewed solutions are BAD!
 - Standardized, widely-accepted solutions are GOOD!

Security through obscurity?

- Why not?
- Easier to maintain secrecy of a key than an algorithm
 - Reverse engineering
 - Social engineering
 - Insider attacks
- Easier to change the key than the algorithm
- In general setting, much easier to share an algorithm than for everyone to use their own
A classic example: shift cipher

- Assume the English uppercase alphabet (no lowercase, punctuation, etc.)
 - View letters as numbers in \(\{0, \ldots, 25\} \)
- The key is a random letter of the alphabet
- Encryption done by addition modulo 26

- Is this secure?
 - Exhaustive key search
 - Automated determination of the key

Another example: substitution cipher

- The key is a random permutation of the alphabet
 - Note: key space is huge!
- Encryption done in the natural way

- Is this secure?
 - Frequency analysis
 - A large key space is necessary, but not sufficient, for security
Another example: Vigenere cipher

Use a word as a set of shift cipher inputs…

- More complicated version of shift cipher
- Believed to be secure for over 100 years
- Is it secure?
Attacking the Vigenere cipher

- Let p_i (for $i=0, \ldots, 25$) denote the frequency of letter i in English-language text
 - Known that $\Sigma p_i^2 \approx 0.065$
- For each candidate period t, compute frequencies $\{q_i\}$ of letters in the sequence c_0, c_t, c_{2t}, \ldots
 - For the correct value of t, we expect $\Sigma q_i^2 \approx 0.065$
 - For incorrect values of t, we expect $\Sigma q_i^2 \approx 1/26$
- Once we have the period, can use frequency analysis as in the case of the shift cipher

Moral of the story?

- Don't use "simple" schemes
- Don't use schemes that you design yourself
 - Use schemes that other people have already designed and analyzed…
Moving on…