CMSC424: Database Design
Introduction/Overview

Professor: Pete Keleher
keleher@cs.umd.edu

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc…
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
 - BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem
1. Closure

- Given a set of functional dependencies, \(F \), its closure, \(F^+ \), is all FDs that are implied by FDs in \(F \).
 - e.g. If \(A \rightarrow B \), and \(B \rightarrow C \), then clearly \(A \rightarrow C \)

- We can find \(F^+ \) by applying Armstrong’s Axioms:
 - if \(\beta \subseteq \alpha \), then \(\alpha \rightarrow \beta \) (reflexivity)
 - if \(\alpha \rightarrow \beta \), then \(\gamma \alpha \rightarrow \gamma \beta \) (augmentation)
 - if \(\alpha \rightarrow \beta \), and \(\beta \rightarrow \gamma \), then \(\alpha \rightarrow \gamma \) (transitivity)

- These rules are
 - sound (generate only functional dependencies that actually hold)
 - complete (generate all functional dependencies that hold)

Additional rules

- If \(\alpha \rightarrow \beta \gamma \), then \(\alpha \rightarrow \beta \) and \(\alpha \rightarrow \gamma \) (decomposition)
- If \(\alpha \rightarrow \beta \) and \(\alpha \rightarrow \gamma \), then \(\alpha \rightarrow \beta \gamma \) (union)
- If \(\alpha \rightarrow \beta \) and \(\gamma \beta \rightarrow \delta \), then \(\alpha \gamma \rightarrow \delta \) (pseudotransitivity)

- The above rules can be inferred from Armstrong’s axioms.
Example

- \(R = (A, B, C, G, H, I) \)
- \(F = \{ \)
 - \(A \rightarrow B \)
 - \(A \rightarrow C \)
 - \(CG \rightarrow H \)
 - \(CG \rightarrow I \)
 - \(B \rightarrow H \) \}
- Some members of \(F^+ \):
 - \(A \rightarrow H \)
 - by transitivity from \(A \rightarrow B \) and \(B \rightarrow H \)
 - \(AG \rightarrow I \)
 - by augmenting \(A \rightarrow C \) with \(G \), to get \(AG \rightarrow CG \) and then transitivity with \(CG \rightarrow I \)
 - \(CG \rightarrow HI \)
 - by augmenting \(CG \rightarrow I \) to infer \(CG \rightarrow CGI \),
 - and augmenting of \(CG \rightarrow H \) to infer \(CGI \rightarrow HI \),
 - and then transitivity
 - or union

2. Closure of an attribute set

- Given a set of attributes \(\alpha \) and a set of FDs \(F \),
- closure of \(\alpha \) under \(F \) is the set of all attributes implied by \(\alpha \)

- In other words, the largest \(\beta \) such that: \(\alpha \rightarrow \beta \)

- Redefining super keys:
 - The closure of a super key is the entire relation schema

- Redefining candidate keys:
 1. It is a super key
 2. No subset of it is a super key
Computing the closure for α

- Simple algorithm

 1. Start with $\beta = \alpha$.
 2. Go over all functional dependencies, $\delta \rightarrow \gamma$, in F^+
 3. If $\delta \subseteq \beta$, then
 Add γ to β
 4. Repeat till β stops changing

Example

- $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- $(AG)^+ = ?$
 - 1. result = AG
 - 2. result = ABCG (A \rightarrow C and A \rightarrow B)
 - 3. result = ABCGH (CG \rightarrow H and CG \subseteq AGBC)
 - 4. result = ABCGHI (CG \rightarrow I and CG \subseteq AGBCH)

- Is (AG) a candidate key?
 - 1. It is a super key.
 - 2. $(A^+) = ABCH, (G^+) = G.$
 - $YES.$
Uses of attribute set closures

- Determining *superkeys and candidate keys*

- Determining if $\alpha \rightarrow \beta$ is a valid FD
 - Check if α^+ contains β

- Can be used to compute F^+

3. Extraneous Attributes

- Consider F, and a functional dependency, $\alpha \rightarrow \beta$.

- “Extraneous”: Any attributes in α or β that can be safely removed? *Without changing the constraints implied by F*

- A is *extraneous* in α if:
 1. A is in α, and
 2. F logically implies $(F - \{\alpha \rightarrow \beta\}) \cup ((\alpha - A) \rightarrow \beta)$
 3. $F = \{AB \rightarrow C, A \rightarrow C\}$ clearly B extraneous in $AB \rightarrow C$

 Check if $(\alpha - \beta)^+$ includes β under F

- A is *extraneous* in β if:
 1. A is in β, and
 2. $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies F
 3. $F = \{AB \rightarrow CD, A \rightarrow C\}$ clearly C extraneous in $AB \rightarrow CD$

 Check if α^+ includes A under F'
3. Extraneous Attributes

A is extraneous in α if:
1. A is in α, and
2. F logically implies $(F - (\alpha \rightarrow \beta)) \cup ((\alpha - A) \rightarrow \beta)$
Check if $(\alpha - A)^+ \subseteq \beta$ under F

A is extraneous in β if:
1. A is in β, and
2. $F' = (F - (\alpha \rightarrow \beta)) \cup ((\alpha \rightarrow (\beta - A))$ logically implies F
Check if α' includes A under F'

Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
- Is C extraneous in $AB \rightarrow CD$?
 - $F' = \{A \rightarrow C, AB \rightarrow D\}$
 - $(AB)^+ = ABC$, so yes.

4. Canonical Cover

A canonical cover for F is a set of dependencies F_c such that
1. F logically implies all dependencies in F_c, and
2. F_c logically implies all dependencies in F, and
3. No functional dependency in F_c contains an extraneous attribute, and
4. Each left side of functional dependency in F_c is unique

In some (vague) sense, it is a minimal version of F:
- repeat
 1. use union rule to merge right sides
 2. eliminate extraneous attributes
- until F_c does not change
4. Canonical Cover

\[(A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C)\]
\[(A \rightarrow BC, B \rightarrow C, AB \rightarrow C)\]

1. use union rule to merge right sides
2. eliminate extraneous attributes
until \(F_c\) does not change

First \(B\) extra?
\(F' = (A \rightarrow C, B \rightarrow C, AB \rightarrow C)\)
\((A)^+ = AC\) does not include \(B\)

\(C\) extra?
\(F' = (A \rightarrow B, B \rightarrow C, AB \rightarrow C)\)
\((A)^+ = A\)
\(= AB\)
\(= ABC\) yes, has \(C\)

\(F' = (A \rightarrow B, B \rightarrow C, AB \rightarrow C)\)

\(A\) extra?
\((B)^+ = BC\) yes

\(F' = (A \rightarrow B, B \rightarrow C)\)

\(F' = (A \rightarrow B, B \rightarrow C)\)

Repeat

- use union rule to merge right sides
- eliminate extraneous attributes
until \(F_c\) does not change

4. Canonical Cover

\(F = \{A \rightarrow BC, B \rightarrow AC, and C \rightarrow AB\}\)

\(B\) extra?
Show \((A)^+\) includes \(B\) under \([A \rightarrow C, B \rightarrow AC, and C \rightarrow AB]\)
\(= A\)
\(= AC\)
\(= ACB\) yes

\([A \rightarrow C, B \rightarrow AC, and C \rightarrow AB]\)

\(C\) extra?
Show \((B)^+\) includes \(C\) under \([A \rightarrow C, B \rightarrow A, and C \rightarrow AB]\)
\(= B\)
\(= AB\)
\(= ABC\) yes

\([A \rightarrow C, B \rightarrow A, and C \rightarrow AB]\)

\(A\) extra?
Show \((C)^+\) includes \(A\) under \([A \rightarrow C, B \rightarrow A, and C \rightarrow B]\)
\(= C\)
\(= BC\)
\(= ABC\) yes

\([A \rightarrow C, B \rightarrow A, and C \rightarrow B]\)

But not unique!
\([A \rightarrow C, B \rightarrow C, and C \rightarrow AB]\)
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc…
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
 - BCNF may not preserve dependencies
- 3NF: Solves the above problem
 - BCNF allows for redundancy
- 4NF: Solves the above problem

Loss-less Decompositions

- Definition: A decomposition of R into (R_1, R_2) is called \textit{lossless} if, for all legal instance of $r(R)$:
 \[r = \prod_{R_1}(r) \Join \prod_{R_2}(r) \]
 (select * from (select R_1 from r) natural join (select R_2 from r))

- In other words, projecting on R_1 and R_2, and joining back, results in the relation you started with.

- Rule: A decomposition of R into (R_1, R_2) is \textit{lossless}, iff:
 \[R_1 \cap R_2 \rightarrow R_1 \quad \text{or} \quad R_1 \cap R_2 \rightarrow R_2 \]
 in F^+. \hspace{1cm} \text{or: } R_1 \cap R_2 \text{ must be key for } R_1 \text{ or } R_2
 Dependency-preserving Decompositions

Is it easy to check if the dependencies in F hold?
Okay as long as the dependencies can be checked in the same table.
Consider $R = (A, B, C)$, and $F = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

1. Decompose into $R_1 = (A, B)$, and $R_2 = (A, C)$
 Lossless? Yes. $R_1 \cap R_2 = \{A\} \rightarrow R_1$
 But, makes it hard to check for $B \rightarrow C$
 The data is in multiple tables.

2. On the other hand, $R_1 = (A, B)$, and $R_2 = (B, C)$
 is both lossless and dependency-preserving
 Really? What about $A \rightarrow C$?
 If we can check $A \rightarrow B$, and $B \rightarrow C$, $A \rightarrow C$ is implied.

\[R = \{A, B, C, D, E\} \]
\[F = \{A \rightarrow B, BC \rightarrow D\} \]
Candidate keys = \{ACE\}
BCNF = true

\[R = \{A, B, C, D\} \]
\[F = \{A \rightarrow B\} \]
Candidate keys = \{A\}
BCNF = true

\[R = \{A, C, D\} \]
\[F = \{AC \rightarrow D\} \]
Candidate keys = \{ACE\}
BCNF = false ($AC \rightarrow D$)

\[C \rightarrow D \]

\[R = \{A, C, E\} \]
\[F = \{\} \]
Candidate keys = \{ACE\}
BCNF = true

Dependency preservation ???
We can check:
$A \rightarrow B$ (R1), $AC \rightarrow D$ (R3),
but we lost $BC \rightarrow D$
So this is not a dependency-preserving decomposition

\[R = \{A, B\} \]
\[F = \{A \rightarrow B\} \]
Candidate keys = \{A\}
BCNF = true

\[R = \{A, C, D\} \]
\[F = \{AC \rightarrow D\} \]
Candidate keys = \{AC\}
BCNF = true
Dependency-preserving Decompositions

Definition:
- Consider decomposition of R into R_1, \ldots, R_n.
- Let F_i be the set of dependencies F^+ that include only attributes in R_i.

The decomposition is dependency preserving, if

$$(F_1 \cup F_2 \cup \ldots \cup F_n)^+ = F^+$$

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc…
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
 - BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem
BCNF may not preserve dependencies

- \(R = \{J, K, L\} \)
- \(F = \{JK \rightarrow L, L \rightarrow K\} \)

- Two candidate keys = \(JK\) and \(JL\)

- \(R \) is not in BCNF

- Any decomposition of \(R \) will fail to preserve \(JK \rightarrow L \)

- This implies that testing for \(JK \rightarrow L \) requires a join

BCNF may not preserve dependencies

- Not always possible to find a dependency-preserving decomposition that is in BCNF.

- \(\text{PTIME} \) to determine if there exists a dependency-preserving decomposition in BCNF
 - in size of \(F \)

- \(\text{NP-Hard} \) to find one if it exists

- Better results exist if \(F \) satisfies certain properties
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc…
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

3NF

- Definition: Prime attributes
 - An attribute that is contained in a candidate key for R

- Example 1:
 - \(R = (A, B, C, D, E, H), F = \{A \rightarrow BC, E \rightarrow HA\}, \)
 - Candidate keys = \{ED\}
 - Prime attributes: D, E

- Example 2:
 - \(R = (J, K, L), F = \{JK \rightarrow L, L \rightarrow K\}, \)
 - Candidate keys = \{JL, JK\}
 - Prime attributes: J, K, L

- Observation/Intuition:
 1. A key has no redundancy (is not repeated in a relation)
 2. A prime attribute has limited redundancy
3NF

R is in *3NF (3rd Normal Form)* if:

- Given a relation schema R, and a set of functional dependencies F, if every FD, $\alpha \rightarrow \beta$, is either:
 1. Trivial, or
 2. α is a superkey of R, or
 3. All attributes in $(\beta - \alpha)$ are prime

- *Why is 3NF good?*
 - Preserves dependencies.

3NF and Redundancy

- *Why does redundancy arise?*
 - Given a FD, $\alpha \rightarrow \beta$, if α is repeated $(\beta - \alpha)$ has to be repeated
 1. If rule 1 is satisfied, $(\beta - \alpha)$ is empty, so not a problem.
 2. If rule 2 is satisfied, then α can't be repeated, so this doesn't happen either
 3. If not, rule 3 says $(\beta - \alpha)$ must contain only prime attributes
 - This limits the redundancy somewhat.

- 3NF relaxes BCNF by allowing some (hopefully limited) redundancy
- *Why good?*
 - There always exists a dependency-preserving lossless decomposition in 3NF.
Decomposing into 3NF

let F_i be a canonical cover for F;

$i := 0$;

for each functional dependency $\alpha \rightarrow \beta$ in F_i

$i := i + 1$;

$R_i := \alpha \beta$;

if none of the schemas R_j, $j = 1, 2, \ldots, i$ contains a candidate key for R

then

$i := i + 1$;

$R_i :=$ any candidate key for R;

/* Optionally, remove redundant relations */

repeat

if any schema R_j is contained in another schema R_k

then

/* Delete R_j */

$R_j := R_k$;

$i := i - 1$;

until no more R_js can be deleted

return (R_1, R_2, \ldots, R_i)

Figure 8.12 Dependency-preserving, lossless decomposition into 3NF.

3CNF Example

\bullet $(R) = (A,B,C,D,E,F,G,H)$

\bullet Function Dependencies

\bullet $F = \{A \rightarrow CGH, AD \rightarrow C, DE \rightarrow F, G \rightarrow H\}$

\bullet $R_1 = \{ACG\}, R_2 = \{ADC\}, R_3 = \{DEF\}, R_4 = \{GH\}$

\bullet $R_1 = \{ACG\}, R_2 = \{ADC\}, R_3 = \{DEF\}, R_4 = \{GH\}, R_5 = \{ABDE\}$

\bullet $R_1 = \{ACG\}, R_2 = \{ADC\}, R_3 = \{DEF\}$, $R_5 = \{ABDE\}$

\bullet $F' =$

\bullet $\{A \rightarrow CGH, AD \rightarrow C, DE \rightarrow F, G \rightarrow H\}$

\bullet $\{A \rightarrow CGH, AD \rightarrow C, DE \rightarrow F, G \rightarrow H\}$

\bullet $\{A \rightarrow CG, DE \rightarrow F, G \rightarrow H\}$

\bullet H is extra in $A \rightarrow CGH$, D extra in $AD \rightarrow C$ - then merge w/ $A \rightarrow CG$

\bullet $R_1 = \{ACG\}, R_3 = \{DEF\}, R_4 = \{GH\}$

\bullet $R_1 = \{ACG\}, R_2 = \{DEF\}, R_3 = \{GH\}, R_5 = \{ABDE\}$

\bullet Lossless: Each has a single FD that is a key

\bullet Preserves dependencies: each carried through a single subrelation