O-O: Day 2

Array and Multiset Types in SQL

- Example of array and multiset declaration:

```sql
create type Publisher as
  (name varchar(20),
   branch varchar(20));

create type Book as
  (title varchar(20),
   author_array varchar(20) array [10],
   pub_date date,
   publisher Publisher,
   keyword-set varchar(20) multiset);

create table books of Book;
```
Creation of Collection Values

- Array construction

 \texttt{array} ['Silberschatz', 'Korth', 'Sudarshan']

- Multisets

 \texttt{multiset} ['computer', 'database', 'SQL']

- To create a tuple of the type defined by the books relation:

 ('Compilers', \texttt{array} ['Smith', 'Jones'],
 \texttt{new Publisher} ('McGraw-Hill', 'New York'),
 \texttt{multiset} ['parsing', 'analysis'])

- To insert the preceding tuple into the relation books

 \texttt{insert into books values}

 ('Compilers', \texttt{array} ['Smith', 'Jones'],
 \texttt{new Publisher} ('McGraw-Hill', 'New York'),
 \texttt{multiset} ['parsing', 'analysis']);

Querying Collection-Valued Attributes

- To find all books that have the word “database” as a keyword,

 \texttt{select title}
 \texttt{from books}
 \texttt{where 'database' in (unnest(keyword-set))}

- We can access individual elements of an array by using indices

 E.g.: If we know that a particular book has three authors, we could write:

 \texttt{select author_array[1], author_array[2], author_array[3]}
 \texttt{from books}
 \texttt{where title = 'Database System Concepts'}

- To get a relation containing pairs of the form “title, author_name” for each book and each author of the book

 \texttt{select B.title, A.author}
 \texttt{from books as B, unnest (B.author_array) as A (author)}

- To retain ordering information we add a \texttt{with ordinality} clause

 \texttt{select B.title, A.author, A.position}
 \texttt{from books as B, unnest (B.author_array) with ordinality as A (author, position)
References, and Path Expressions

Find the names and addresses of the heads of all departments:

```
select head -> name, head -> address
from departments
```

An expression such as “head->name” is called a path expression.

Path expressions help avoid explicit joins:

- If department head were not a reference, a join of departments with people would be required to get at the address.
- Makes expressing the query much easier for the user.
- Also more efficient.

An Alternative: OODBMS

- Persistent OO programming
 - Imagine declaring a Java object to be “persistent”
 - Everything reachable from that object will also be persistent.
 - You then write plain old Java code, and all changes to the persistent objects are stored in a database.
 - When you run the program again, those persistent objects have the same values they used to have.

- Solves the “impedance mismatch” between programming languages and query languages
 - E.g. converting between Java and SQL types, handling rowsets, etc.
 - But this programming style doesn’t support declarative queries.
 - For this reason (?), OODBMSs haven’t proven popular.

- OQL: A declarative language for OODBMSs
 - Was only implemented by one vendor in France (Altair)
OODBMS

- **Currently a Niche Market**
 - Engineering, spatial databases, physics etc...
- **Main issues:**
 - Navigational access
 - Programs specify go to this object, follow this pointer
 - Not declarative
- **Good when you know exactly what you want,**
 - not a good idea in general
 - Similar argument as *network databases vs relational databases*

Comparison of O-O and O-R Databases

- **Relational systems**
 - simple data types, powerful query languages, high protection.
- **Persistent-programming-language-based OODBs**
 - complex data types, integration with programming language, high performance.
- **Object-relational systems**
 - complex data types, powerful query languages, high protection.
- **Object-relational mapping systems**
 - complex data types integrated with programming language, but built as a layer on top of a relational database system

ORMs! Peewee!

- **Note: Many real systems blur these boundaries**
 - E.g. persistent programming language built as a wrapper on a relational database offers first two benefits, but may have poor performance.
Topics

- Object Oriented, Object Relational
- Client-server, Parallel, Distributed Systems
- OLAP/Data Warehouses
- Information Retrieval
- Cloud Computing
 - Data centers, Map-reduce, NoSQL Systems

Client-Server Systems

- Database functionality can be divided into:
 - **Back-end**: manages access structures, query evaluation and optimization, concurrency control and recovery.
 - **Front-end**: consists of tools such as *forms*, *report-writers*, and graphical user interface facilities.
- The interface between the front-end and the back-end is through SQL or through an application program interface.
Parallel Databases

- **Why?**
 - More transactions per second, or less time per query
 - Throughput vs. Response Time
 - Speedup vs. Scaleup
- **Database operations are embarrassingly parallel**
 - E.g. Consider a join between R and S on R.b = S.b
- **But, perfect speedup doesn’t happen**
 - Start-up costs
 - Interference
 - Skew

Parallel Systems

- Parallel database systems consist of multiple processors and multiple disks connected by a fast interconnection network.
- A **coarse-grain parallel** machine consists of a small number of powerful processors
- A **massively parallel** or **fine grain parallel** machine utilizes thousands of smaller processors.
- Two main performance measures:
 - **throughput** --- the number of tasks that can be completed in a given time interval
 - **response time** --- the amount of time it takes to complete a single task from the time it is submitted
Speed-Up and Scale-Up

- **Speedup**: a fixed-sized problem executing on a small system is given to a system which is N-times larger.
 - Measured by:
 \[
 \text{speedup} = \frac{\text{small system elapsed time}}{\text{large system elapsed time}}
 \]
 - Speedup is **linear** if equation equals N.
- **Scaleup**: increase the size of both the problem and the system
 - N-times larger system used to perform N-times larger job
 - Measured by:
 \[
 \text{scaleup} = \frac{\text{small system small problem elapsed time}}{\text{big system big problem elapsed time}}
 \]
 - Scale up is **linear** if equation equals 1.

Speedup

![Graph showing linear and sublinear speedup](image-url)
Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

- **Startup costs:**
 - Cost of starting up multiple processes may dominate computation time, if the degree of parallelism is high.

- **Interference:**
 - Processes accessing shared resources (e.g., system bus, disks, or locks) compete with each other, thus spending time waiting on other processes, rather than performing useful work.

- **Skew:**
 - Increasing the degree of parallelism increases the variance in service times of executing tasks in parallel.
 - Overall execution time determined by *slowest* of parallelly executing tasks.
Parallel Databases

- Shared-nothing vs. shared-memory vs. shared-disk

<table>
<thead>
<tr>
<th></th>
<th>Shared Memory</th>
<th>Shared Disk</th>
<th>Shared Nothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication between processors</td>
<td>Extremely fast</td>
<td>Disk interconnect is very fast</td>
<td>Over a LAN, so slowest</td>
</tr>
<tr>
<td>Scalability?</td>
<td>Not beyond 32 or 64 or so (memory bus is the bottleneck)</td>
<td>Not very scalable (disk interconnect is the bottleneck)</td>
<td>Very very scalable</td>
</tr>
<tr>
<td>Notes</td>
<td>Cache-coherency an issue</td>
<td>Transactions complicated; natural fault-tolerance.</td>
<td>Distributed transactions are complicated (deadlock detection etc);</td>
</tr>
<tr>
<td>Main use</td>
<td>Low degrees of parallelism</td>
<td>Not used very often</td>
<td>Everywhere</td>
</tr>
</tbody>
</table>
Distributed Systems

- Over a wide area network
- Typically not done for performance reasons
 - For that, use a parallel system
- Done because of necessity
 - Imagine a large corporation with offices all over the world
 - Also, for redundancy and for disaster recovery reasons (geo-replication)
- Lot of headaches
 - Especially if trying to execute transactions that involve data from multiple sites
 - Keeping the databases in sync
 - 2-phase commit for transactions uniformly hated
 - Autonomy issues
 - Even within an organization, people tend to be protective of their unit/department
 - Locks/Deadlock management
 - Works better for query processing
 - Since we are only reading the data

MapReduce Framework

- Provides a fairly restricted, but still powerful abstraction for programming

- Programmers write a pipeline of functions, called map or reduce
 - map programs
 - inputs: a list of “records” (record defined arbitrarily – could be images, genomes etc…)
 - output: for each record, produce a set of “(key, value)” pairs
 - reduce programs
 - input: a list of “(key, {values})” grouped together from the mapper
 - output: whatever

- Both can do arbitrary computations on the input data as long as the basic structure is followed
MapReduce Framework

Word Count Example

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));
MapReduce Framework: Word Count

input files: a b a c d b
mappers: (a, 1) (b, 1) (a, 1) (c, 1) (d, 1) (b, 1)
intermediate files: (a, 1) (a, 1) (a, 1) (a, 1) (a, 1) ...
reducers: (a, 8) (c, 5)
output files: ...

More Efficient Word Count

input files: a b a c d b
mappers: (a, 2) (b, 2) (c, 1) (d, 1)
intermediate files: (a, 2) (a, 3) (c, 1) (c, 5)
reducers: (a, 8) (c, 5)
output files: (b, 6) (d, 2)

Called “mapper-side” combiner