Finished with Crypto Overview

Moving into Hashes and Public Key

- Scenarios:
 - Private key crypto
 - Public key crypto
• Overview of asymmetric-key crypto
• Intuition for El Gamal and RSA
 • And intuition for attacks
• Digital signatures / authenticity
• Recall our three goals:
 • Confidentiality
 • Integrity
 • Authenticity
We will use asymmetric crypto to mitigate these drawbacks!
High-level idea

- Generate a pair of keys
 - One for encryption, one for decryption
- Make encryption key public!
 - On your website, in the New York Times
 - Anyone can send you a private message
- Secret key is the *trapdoor*
Asymmetric crypto

Bob

Alice

Public channel

Em (or error)

• $k_e \neq k_d$
• $k_d =$ private key, $k_e =$ public key
 • Bob computes both, gives public key to Alice
• Alice sends a message to Bob: $c = E(m, k_e)$
• Bob can decrypt it: $m = D(m, k_d)$
• Anyone can send, only Bob can read!
Asymm. Cryptosystem: Definition

- Three polynomial-time algorithms:
 - KeyGen: Returns k_p (public) and k_s (secret)
 - $E(k_p, m)$: Encrypts m with k_p, returns c in C
 - Must be randomized (why?)
 - $D(k_s, c)$: Decrypts c with k_s, returns m in M
 - Or error

- Correctness condition:
 - For all pairs (k_p, k_s): $D(k_s, E(k_p, m)) = m$
Security game

Challenge:
Choose $b = x$ or y at uniform random

$$c = E(k_p, m_b)$$

m_x and m_y

Eve’s job: Guess whether x or y was picked. Cipher text secure IFF no better than guessing
Public-key security

• Ciphertext-only security implies CPA security!
 • Why?
 • (Also implies multiple messages are OK)
Pros and Cons

• Scales well — everyone makes one key pair
 • Not \(n \) keys

• No direct setup comms between Alice and Bob

• Asymmetric is \textit{much, much slower}

• Asymmetric is easier to attack
 • Requires stronger assumptions
The authenticity problem

- In symmetric, we needed an **authentic, private** channel to exchange keys
 - Diffie-Hellman let us relax to **authentic** only
 - Public-key also requires authentic channel
- Who posted that ad in the NY Times?
 - Much more on this later
In practice: Hybrid

- Bob generates key pair and publishes k_p
- Alice generates new symmetric key k_{AB}
- Alice -> Bob: $c_1 = E(k_p, (\text{Alice} \ || \ k_{AB}))$
- Alice -> Bob: $c_2 = E(k_{AB}, \text{message})$
- Arbitrary-length messages, efficiently
 - Keep k_{AB} as a session key
Intuition for algorithms
El Gamal (simplified)

- Similar to Diffie-Hellman
 - Public key: prime p, generator g, $h = g^x$
 - Private key: x

- Encryption: Sender chooses y
 - $c_1 = g^y$, $c_2 = m^y h^y$

- Decryption: $m = c_2 / c_1^x$

- Security equivalent to D-H hardness
RSA background

- N = pq, p and q distinct, odd primes
- $\phi(N) = (p-1)(q-1)$
 - Easy to compute $\phi(N)$ given the factorization of N
 - Hard to compute $\phi(N)$ without the factorization of N
- Fact: for all $x \in \mathbb{Z}_N^*$, it holds that $x^{\phi(N)} = 1 \mod N$
 - Proof: take CMSC 456!
- If $ed = 1 \mod \phi(N)$, then for all x it holds that $(x^e)^d \mod \phi(N) = x \mod N$
 - I.e., given d, we can compute e^{th} roots
Stated Another Way

• Public key is $e, N \quad c = p^e \mod N$
• Private key is $d, N \quad p = c^d \mod N$
• d related to e as mult inverse mod $\phi(N) = (p-1)(q-1)$
 • $d \times e \mod \phi(N) = 1$
 • mult inverse mod constant is easy (Euclid’s alg)
 • so d can be found if we know $\phi(N)$

• How can $\phi(N)$ be found, assuming we know n?
 • factor into p, q, compute $(p-1) \times (q-1)$
 • but factoring big ints is hard
Hardness of computing e^{th} roots?

- If factoring is easy, then the RSA problem is easy

- We know of no other way to solve the RSA problem besides factoring N
 - But we do not know how to prove that the RSA problem is as hard as factoring

- The upshot: we believe factoring is hard, and we believe the RSA problem is hard
How hard is factoring?

• Current record
 • factoring 768-bit number, collaboration of several big organizations.
 • Non-math dude w/ a couple computers can factor 512-bit numbers in a couple months

• So need $|N| \approx 1024$ for reasonable security

• Currently $|N| \approx 2048$ recommended for good security margins
RSA key generation

- Generate random primes \(p, q \) of sufficient length
- Compute \(N = pq \) and \(\phi(N) = (p-1)(q-1) \)
- Compute \(e \) and \(d \) such that \(ed = 1 \mod \phi(N) \)
 - \(e \) must be relatively prime to \(\phi(N) \)
 - Typical choice: \(e = 3 \); other choices possible
- Public key = \((N, e) \); private key = \((N, d) \)
“Textbook RSA” encryption

• Public key \((N, e)\); private key \((N, d)\)
• To encrypt a message \(m \in \mathbb{Z}_N^*\), compute
 \[c = m^e \mod N \]
• To decrypt a ciphertext \(c\), compute \(m = c^d \mod N\)
• Correctness clearly holds…

• …what about security?
Textbook RSA is insecure!

- It is deterministic!
- Furthermore, it can be shown that the ciphertext leaks specific information about the plaintext
Padded RSA

• Introduce randomization…
• Public key (N, e); private key (N, d)
 • Say |N| = 1024 bits
• To encrypt \(m \in \{0, 1\}^{895} \),
 • Choose random \(r \in \{0, 1\}^{128} \)
 • Compute \(c = (r | m)^e \mod N \)
• Decryption done in the natural way…
• Essentially this is standardized as PKCS #1 v1.5 (since superseded)
Implementation attacks

• Timing and power:
 • How long / how much to compute $c^d \mod N$

• Bad randomness:
 • p and q can’t be predictably generated
 • If $n = pq$ and $n' = pq'$, both are broken

• Bad padding / malleability
Malleability

- Given c (m unknown), can construct c' that will decrypt to a related message m'
 - Recall CBC attack last time
- Basic El Gamal and basic RSA are malleable
 - CCA-safe variations exist
Activity
(Time permitting)
Public key example map
Message = 66
Private key map

Minimum dominating set = NP hard
Message = 66
Notes on this example

• Finding the (a) private map is very hard
 • Minimum dominating set (NP)
 • For a sufficiently large map

• But, can solve as a system of linear equations

• So, this is \textit{not secure}
 • But it is kind of a fun illustration
Zero-Knowledge Proof Systems

• Allows you to prove that you know a secret, w/o giving anything away. Is RSA one?

• Classic example: graph isomorphism
 • two graphs are isomorphic if we can rename the vertices of one and get the other

• How it works:
 • Alice creates G_x a large (~500 vertices) graph (edges and vertices).
 • Alice creates G_y by renaming vertices
 • Her secret key is the mapping of vertices between G_x and G_y

• To prove that she is Alice, she:
 • Alice creates a series of graphs: G_1-G_k, each by renaming from G_x, and makes them public
 • For each G_i, Bob asks Alice to give him a mapping from G_i to either G_x or G_y, but not both. Bob chooses.
Does This Work?

- How can she do it?
 - renaming is trivial
- How is this zero-knowledge?
 - After the proof, Bob knows some graphs with mappings to G_x, and some with mappings to G_y.
 - However, he could have generated similar graphs himself.
 - He still does not know of any graphs w/ mappings to both G_x and G_y.
- How is this proof?
 - Trudy could generate a series of graphs G_1-G_k as well, however
 - She can only produce a mapping from a given G_i to one of G_x and G_y.
 - If Bob asks for the mapping she has, good. If not, she is exposed.
 - For 30 graphs, her chances would be 1 in 2^{30} (1 in a billion)
- Down side: too expensive.
Your turn! Public map
private map